Spark

Difference Between USM and EDM - Ultrasonic Machining & Electric Discharge Machining

Machining is one type of subtractive manufacturing processes where excess material is removed from the workpiece to produce intended feature. Conventional machining processes (such as turning, threading, facing, milling, shaping, drilling, hobbing, etc.) employ a wedge-shaped cutting tool to shear off the workpiece material in the form of chips. Such processes always utilize mechanical energy in order to remove material by shearing. Several non-conventional machining processes have also emerged over

Difference Between EDM and EBM

Non-Traditional machining (NTM) processes directly utilize different forms of energy (mechanical, electrical, chemical, thermal, etc.) to remove material from the workpiece following the subtractive manufacturing approach. Among thermal energy based NTM processes, EDM, EBM, LBM and PAM are common. In all these processes the workpiece material is locally heated to a very high temperature in order to melt and vaporize it. However, the source of heat is different for each

Differences between Conventional EDM and Dry EDM

Electric Discharge Machining (EDM) is one type of non-conventional machining process where workpiece material is removed by melting and vaporizing with the assistance of high intensity sparks generated between two electrodes. Here the conductive workpiece is made positive electrode, while a shaped tool is made negative electrode. These two electrodes are separated by a small distance (called inter-electrode gap, IEG), and this gap is immersed with appropriate dielectric fluid. In

Difference between arc welding electrode and EDM electrode

An electrode acts as one of the two terminals of an electric circuit to establish the electrical connection. It is always made of electrically conductive material so that it can easily emit or receive electrons or ions. Based on the polarity, an electrode can be either anode or cathode. A cathode is considered as negatively charged electrode as it liberates electrons, while an anode is considered as positively charged electrode

Differences between EDG and ECG

Electric Discharge Grinding (EDG) is one thermal energy based non-traditional machining process that has apparent similarity in construction with the conventional grinding process. In EDG, a disc type metallic wheel is rotated about a fixed axis maintaining a small gap with the workpiece. The conductive wheel is given negative polarity, while the conductive workpiece is given positive polarity. The gap between wheel and workpiece is immersed with a suitable dielectric

Differences between EDM and EDG

Electric Discharge Machining (EDM) is one thermal energy based non-conventional machining process where material is removed by melting and vaporization with the assistance of high intensity spark. A form tool is made negative electrode, while the conductive workpiece is made positive electrode. The tool electrode is given appropriate shape in accordance with the feature to be produced. A small inter-electrode gap (IEG) is always maintained between two electrodes. This IEG

Difference Between Pressure Flushing and Vacuum Flushing in EDM

In die-sinking electro-discharge machining (EDM), the tool electrode and the workpiece (both made of electrically conductive material) are connected with two terminals of a DC power source. A small gap (in micron range) is maintained between these two electrodes. This gap is immersed with appropriate dielectric fluid that behaves as an insulator in initial state. When sufficient potential difference is applied across the two electrodes, the dielectric breaks down to

Difference Between Copper Electrode and Graphite Electrode for EDM

Electro-Discharge Machining (EDM) employs the principle of thermal energy (melting and vaporization) to remove material from the workpiece. This thermal energy is produced by means of electric sparks. In die sinking EDM, the electrode and workpiece are connected with two terminals of a power source and a small gap is maintained between them. Suitable dielectric fluid (like kerosene) is applied in this inter-electrode gap (IEG), which in normal state behaves

Difference Between Dielectric and Electrolyte

In electro-discharge machining (EDM), spark generated between the conductive tool electrode and the conductive workpiece melts and vaporizes the workpiece to realize material removal. A small gap is maintained in between the tool and workpiece and an appropriate dielectric fluid is applied in this gap. Dielectric is basically a liquid that can suddenly breakdown once a particular potential difference is applied across it. Before breakdown, it acts as insulator; whereas

Difference Between Die Sinking EDM and Wire-EDM

Non-Traditional Machining (NTM) processes had evolved to eliminate the restrictions imposed by conventional metal cutting processes. For the sake of material removal, NTM processes directly utilize various forms of energy (like mechanical, electrical, thermal, chemical, electro-chemical, ionic, light, etc.). One such thermal energy based NTM process is Electric Discharge Machining (EDM). EDM utilizes an electrically conductive tool electrode that has a specific shape. This electrode is then brought closer to

Difference Between EDM and ECM - Electro-Discharge & Electro-Chemical Machining

Unlike conventional metal cutting processes, non-traditional machining (NTM) processes can directly employ different forms of energy for controlled removal of material from the workpiece to impart desired shape, size and finish. Electro-Discharge Machining (EDM) is one thermal energy based process where material is removed by localized melting and vaporization. Intense heat is generated by means of electric sparks. Here the tool made of conductive material is made one electrode (cathode),